Ser pobre é pedir uma cachaça no buteco e jogar um pouco pro "santo", tem santo por aí com cirrose......

veja todos os voos de drone em

www.Zmaro.tv/Drone

 

 

Mais
acessados

Principal

Modelos de
Documento

Receitas

Resumos
de Livros

 Perguntas e Respostas
 Jurídicas

Idéias para
ficar rico

Dicas gerais

Dizem que

Ser pobre é


Memorização

Curso de Memorização

Memorização:
que dia cai?

Demais
Cursos e
apostilas


Gastronomia

carnes

bacalhau

dicas gerais

microondas

 receitas diversas

Receitas

em vídeo

tudo sobre congelamento

vinhos


Download

delivery

palpites para loteria

simulador keno (bingo)

treine digitação

ringtones de graça

Saiba quais números
mais e menos saem
na MEGASENA


Contato

Fale com o Zmaro
e/ou
PobreVirtual

Site do
Programa Zmaro

Vídeos do
Programa Zmaro
Humor inteligente
de forma descontraída...

 
Manhã Transfigurada - Luís Antônio de Assis Brasil
envie seus resumos e sugestões, clique aqui
O Cancioneiro é composto por poemas líricos, rimados e metrificados, de forte influência simbolista. É do Cancioneiro um dos poemas mais célebres de Pessoa, Autopsicografia, em que reflete sobre o fazer poético: "O poeta é um fingidor. Finge tão completamente Que chega a fingir que é dor A dor que deveras sente. E os que lêem o que escreve, Na dor lida sentem bem, Não as duas que ele teve, Mas só a que eles não têm." O leitor atento há de perceber que o poeta parte de uma dor sua, real, integral. Só quem sente uma dor pode fingir outra que não sente. Só quem tem personalidade pode ser ator. Como Fernando Pessoa. Já os leitores, lêem no poema a dor ou o sentimento que lhes falta e que gostariam de ter. Sentem-na ao atribuí-la a poeta. veja os vídeos do Programa Zmaro: Humor inteligente de forma descontraída. Acesse www.Zmaro.com.br  
A não distribuição uniforme dos versos e a despreocupação com a distribuição rítmica dão ao poema um tom confessional, aproximando-o de um texto em prosa. As lembranças relatadas no texto referem-se a uma data específica lembrada pelo eu-poético - o dia do aniversário. Esta data é a propulsora para outras recordações da infância e outras angútias do eu-poético, servindo também como ponto de referencia temporal quando o eu-poético intercala-se e contrapõe-se entre o passado e o presente. A época da infância no poema é marcada pela inocência, pois a criança ainda não tem noção do que se passa à sua volta: "Eu tinha a grande saúde de não perceber coisa nenhuma". A passagem da criança para o adulto é marcada por uma perda, pois ele percebe que a vida não tem mais sentido. O poeta hoje "é terem vendido a casa", ou seja, é um vazio, que perdeu, inclusive, o bem mais precioso, a sensação de totalidade, de alegria, de aconchego dado pela vida em família na infância longínqua. Assim, a festa de aniversário toma o aspecto simbólico de um ritual familiar e religioso, dentro do qual a criança se torna o centro de um mundo que a acolhe e protege carinhosamente. "As tias velhas, os primos diferentes, e tudo era por minha causa", denota, com esta adjetivação uma característica comum a toda infância: o egocentrismo. No presente, não há mais aniversários nem comemorações: resta ao poeta durar, porque o pensamento amargurado, critico e pessimista da vida o impede de ter a inocência de outrora.

O tom nostálgico e angustiado do poema dá a sensação de que o eu-poético vive uma introspecção conflitiva relembrando um passado supostamente mais feliz que o presente. O trecho "serei velho quando o for. Nada mais." parece querer dar fim a este conflito interno. "Raiva de não ter trazido o passado roubado na algibeira !..." conclui o tom confessional do poema e enfatiza uma espécie de conformismo ríspido e amargurado com o presente melancólico e sem perspectiva em relação a vida. "O tempo em que festejavam o dia dos meus anos !" é repetida muitas vezes no texto dando ênfase a importância da data na lembrança do eu-poético, servindo também para marcar a justa contraposição entre passado e presente, respectivamente infância e fase adulta. O ultimo verso do poema sugere uma acomodação amargurada em relação ao passado. Em "Eu era feliz e ninguém estava morto" pode-se notar novamente o conformismo com o presente que pode não ser o idealizado, mas que está alicerçado em um passado inocente, de aspecto virginal, contrapondo-se com a atual falta de perspectivas e a desmotivação para a vida, onde ele diz: "Hoje já não faço anos. Duro." O eu-poético oraliza um tom de amargura versificado de forma clara, coesa e coerente, marcando com precisão verbal os estados temporais e emocionais a que se refere no poema. Por se parecer com uma "auto-confissão poética", pode-se afirmar que o eu-poético insere no texto características comuns às pessoas que estão prestes a deixar o mundo material, ou que neste não sentem mais vontade de estar por muito mais tempo. A reflexão conflitiva e melancólica sobre o passado, a amargura em relação ao presente e sensação de que o tempo passou e algo que deveria ser resgatado perdeu-se em um passado longínquo, são características comuns em pessoas que encontram-se neste estágio da existência humana. veja os vídeos do Programa Zmaro: Humor inteligente de forma descontraída. Acesse www.Zmaro.com.br  
LERNER, D. e SADOVSKY, P. O sistema de numeração:um problema didático

11. LERNER, D. e SADOVSKY, P. O sistema de numeração:um problema didático. In: PARRA, Cecília; SAIZ Irmã; [et al] (Org.). Didática da Matemática: Reflexões Psicopedagógicas. Tradução por Juan Acuña Llorens. Porto Alegre: Artes Médicas, 1996. p. 73-155.
Como e porque se iniciou a pesquisa sobre a aquisição da noção de número.
A relação entre os grupamentos e a escrita numérica tem sido um problema para as crianças nas experiências escolares o que tem levado pesquisadores e educadores realizarem esforços, com experimentos de recursos didáticos diversos, para tornar real a noção de agrupamentos numéricos às crianças nas series iniciais. A gravidade do problema foi detectada através de entrevistas com crianças que não eram trabalhadas nos programas que usavam estes recursos.
Elas utilizavam métodos convencionais nas operações de adição e subtração (vai um) sem entenderem os conceitos de unidades, dezenas e centenas. Mesmo naquelas que pareciam acertar, não demonstravam entender os algarismos convencionais na organização de nosso sistema de numeração. (Lerner,D 1992).
As dificuldades foram detectadas e analisadas em crianças de vários países. Chamou a atenção dos pesquisadores o fato das crianças não entenderem os princípios do sistema numérico. Foi verificado que as práticas pedagógicas não consideravam os aspectos sociais e históricos vividos pelas crianças, ou seja, o dia-dia que traziam para escola não era importante quando os alunos chegavam à escola, e mesmo no decorrer do ano letivo; a preocupação estava centrada apenas na fixação da representação gráfica.
Era necessário compreender o caminho mental que essas crianças percorriam para adquirirem este conhecimento. Para tornar claro esse fenômeno, iniciaram pela elaboração de situações didáticas. Assim foi necessário testá-las em aula para descobrir os aspectos relevantes para as crianças no sistema de numeração, tais como: as ideias elaboradas sobre os números, formulação de problemas e conflitos existentes.Foi por meio de entrevistas com as crianças de 5 a 8 anos que se es-clareceu o caminho que percorrem, de forma significativa, na construção de conceito de número. Através das ideias, justificações e conflitos de-monstrados nas respostas foi possível traçar novas linhas de trabalho didático.

- História dos conhecimentos que as crianças elaboram a respeito da numeração escrita
A pergunta levantada pelos pesqui¬sadores é: como as crianças compre-endem e interpretam os conhecimen¬tos vivenciados no seu cotidiano no meio social-familiar de utilização da numeração escrita? A hipótese era que as crianças elaboram critérios própri¬os para produzir representações numéricas e que a construção da notação convencional não segue a ordem da sequência numérica.
Para buscar a resposta às hipóteses levantadas, situações experimentais, através de jogos foram projetadas e relacionadas à comparação de nú-meros. Através das respostas das crianças entrevistadas chegou-se a su-posição que elas elaboram uma hipó¬tese de "quanto maior a quantidade de algarismos de um número, maior é o número", ou "primeiro número é quem manda".
As crianças usam como critério de comparação de números maiores ou menores elaborando a partir da interação com a numeração escrita, quando ainda não conhecem a denominação oral dos números que comparam. Ao generalizarem estes critérios, outras crianças mostraram dificuldades com afirmações contra¬ditórias quando afirmavam que "o numeral 112 é maior que 89, por que tem mais números, mas logo muda apontando para o 89 como maior por que - 8 mais 9 é 17 -, então é mais."
Assim concluiu-se que a elaboração de critério de comparação é importante para a compreensão da numeração escrita.(p. 81).
posição dos algarismos como critério de comparação ou "o primeiro é quem manda"
Um dos argumentos usados pelas crianças respondentes é que ao comparar os números com a mes¬ma quantidade de algarismos, diziam que, a posição dos algarismos é determinada pela função no sistema de números (por exemplo: que 31 é maior que 13 por que o 3 vem primeiro). Assim elas descobrem que além da quantidade de algarismos, a magnitude do número é outra característica específica dos sistemas posicionais. Tais respostas não são precedidas de conhecimentos das razões que originaram as variações.
Para as crianças da 1a série que ainda não conhecem as dezenas, mas conseguem ver a magnitude do nú¬mero, fazem a seguinte comparação: o 31 é maior porque o 3 de 31 é maior que o 2 do 25.
Assim "os dados sugerem que as crianças se apropriam primeiro da es-crita convencional da potência de base."Papel da numeração falada
Os conceitos elaborados pelas crianças a respeito dos números são baseados na numeração falada e em seu conhecimento descrita conven-cional dos "nós".
"Para produzir os números cuja escrita convencional ainda não haviam adquirido, as crianças misturavam os símbolos que conheciam colocan-do-os de maneira tal, que se correspondiam com a ordenação dos termos na numeração falada" (p.92). Sendo assim, ao fazerem comparações de sua escrita, o fazem como resultado de uma correspondência com a numeração falada, e por ser esta não posicional.
"Na numeração falada a justaposição de palavras supõe sempre uma operação aritmética de soma ou de multiplicação - elas escrevem um número e pensam no valor total desse número. Como exemplo: duzentos e cinquenta e quatro -escrevem somando 200+ 50+ 4 ou 200504 e quatro mil escrevem 41000- dando a ideia de multiplicação".
A numeração escrita regular é mais fechada que a numeração falada. É regular porque a soma e a multiplicação, são utilizadas sempre pela multi-plicação de cada algarismo pela potência da base correspondente, e se somam aos produtos que resultam dessas multiplicações." É fechada porque não existe nenhum vestígio das operações aritméticas racionais envolvidas, sendo deduzidas a partir da posição que ocupam os algarismos.
Ex: 4815 = 4x 103 + 8x102+ 1x 101 + 5x10.
Através destes insipientes resulta¬dos acima citados, é possível dedu¬zir "uma possível progressão nas correspondências entre o nome e a no-tação do número até a compreensão das relações aditivas e multiplicativas envolvidas na numeração falada".
As crianças que realizam a escrita não-convencional o fazem a seme-lhança da numeração falada, pois demonstraram em suas escritas numé-ricas que as diferentes modalidades de produção coexistem para os números posicionados em diferentes intervalos da sequência ao escreverem qualquer número convencionalmente com dois ou três algarismo em correspondência com a forma oral. Exemplo: podem escrever cento e trinta e cinco em forma convencional (135), mas representam mil e vinte e cinco da seguinte forma: 100025. Mesmo aquelas crianças que escrevem convencionalmente os números entre cem e duzentos, podem não generalizar esta modalidade a outras centenas. Por exemplo, escrevem 80094 (oitocentos e noventa e quatro).
Assim é que a relação numeração fala/numeração escrita não é unidirecional. Observa-se também que a numeração falada intervém na conceitualização da escrita numérica.
O que parece é que algumas crianças demonstram que utilizam um critério para elaborar a numeração escrita. Assim acham que mil e cem e cem mil sejam a mesma coisa, pois elaboram o elemento símbolo, qualificação e não quantificação. Desta forma as crianças apropriam-se pro-gressivamente da escrita convencional dos números a partir da vinculação com a numeração falada. Mas pergunta-se, como fazem isto? Elas supõem que a numeração escrita se vincula estritamente à numeração falada, e sabem também que em nosso sistema de numeração a quantidade de algarismos está relacionada à magnitude do número representado.
Do conflito à notação convencional
Há momentos em que a criança manipula a contradição entre suas conceitualizações sem conflito. Às vezes centram-se exclusivamente na quantidade de algarismos das suas escritas que produziram, e parece ignorar qualquer outra consideração a respeito do valor dos números re-presentados. Assim também parece claro que não é suficiente conhecer o valor dos números para tomar consciência do conflito entre quantidade de número e a numeração falada.
Em outros momentos a criança parece alternar os sistemas de conceitualizações dos números. Em outro momento, o conflito aparece, pois ao vincular a criança a numeração falada na produção da escrita, mostra-se insatisfeita achando que é muito algarismo.
Exemplo: Ao pedir-se para escreverem seis mil trezentos e quarenta e cinco, fazem 600030045. Ao mesmo tempo escrevem 63045. Isto mostra que nesse momento encontra-se em conflito pela aproximação da escrita convencional e a falada.
O conflito é percebido após compararem e corrigirem a escrita numérica feita por eles mostrando uma solução mais ou menos satisfatória.
É percebido que pouco a pouco a criança vai tomando consciência das contradições procurando superar o conflito, mas sem saber como; pouco a pouco através da re-significação da relação entre a escrita e a numera-ção falada elaboram ferramentas para superar o conflito. Essa parece ser uma importante etapa para progredir na escrita numérica convencional. Portanto, as crianças produzem e interpretam escritas convencionais an-tes de poder justificá-las através da "lei de agrupamento recursivo".]
Sendo assim torna-se importante no ensino da matemática considerar a natureza do objeto de conhecimento como valorizar as conceitualizações das crianças à luz das propriedades desse objeto. - Relações entre o que as Crianças sabem e a organização posicional do sistema de numeração.Devido a convivência com a linguagem numérica não percebemos a distinção entre a propriedade dos números e a propriedade da notação numérica, ou seja, das propriedades do sistema que usamos para representá-lo.As propriedades dos números são universais, enquanto que as leis que regem os diferentes sistemas de numeração não o são. Por exemplo: oito é menor que dez é um conceito universal, pois em qualquer lugar, tempo ou cultura será assim. O que muda é a justificativa para esta afirmação, pois varia de acordo com os sistemas qualitativos e quantitativos dos números ou posicionai dos algarismos.
A posicionalidade é responsável pela relação quantidade de algarismos e valor do números.
A criança começa pela detecção daquilo que é observável no contexto da interação social e a partir deste ponto os números são baseados na numera¬ção falada e em seu conhecimento da escrita convencional ("dos nós").
IV - Questionamento do enfoque usualmente adotado para o sistema de numeraçãoO ensino da notação numérica pode ter modalidade diversa como: trabalhar passo a passo através da administração de conhecimento de forma "cômoda quotas anuais" - metas definidas por série - ou através do saber socialmente estabelecido.
Pergunta-se: é compatível trabalhar com a graduação do conhecimento? Ou seja, traçar um caminho de início e fim, determinado pelo saber oficial? E qual é o saber oficial? E o que se estar administrando de conhecimento numérico nas aulas?
O processo passo a passo e aperfeiçoadamente, não parece compatível com a natureza da criança, pois elas pensam em milhões e milhares, elaboram critérios de comparação fun¬damentados em categorias. Podem conhecer números grandes e não saber lidar com os números menores.
Os procedimentos que as crianças utilizam para resolver as operações têm vantagens que não podem ser depreciadas se comparadas com procedimentos usuais da escola.
No esforço para alcançar a compreensão das crianças no sistema de numeração e não a simples memorização é que muitos educadores tem utilizado diferentes recursos para materializar o grupamento numérico. Alguns utilizam sistemas de códigos para traduzir símbolos dando a cada grupamento uma figura diferente como, triângulo para potências de 10, quadradinho para potências de 100, ou a semelhança do sistema egípcio para trabalhar a posicionalidade de um número ou empregam o ábaco como estratégia para as noções de agrupar e reagrupar a fim de levar a compreensão da posicionalidade.No entanto todos estes pressupostos não são viáveis por razões próprias da natureza da criança, como também considerando o ambiente social, no qual convivem com os números.
As crianças buscam desde cedo a notação numérica. Querem saber o mais cedo possível, como funciona, para que serve, como e quando se usa. Inicialmente, não se interessam pela compreensão dos mesmos e sim pela sua utilidade. Dessa forma, a compreensão passa a ser o ponto de chegada e não de partida.
Outro problema com as aulas de aritmética é que os professores ofe-recem respostas para aquilo que as crianças não perguntam e ainda ig-noram as suas perguntas e respostas.
V - Mostrando a vida numérica da aula
O ensino do sistema de numeração como objeto de estudo passa por diversas etapas, definições e redefinições, para então, ser devidamente compreendida.
Usar a numeração escrita envolve produção e interpretação das escritas numéricas, estabelecimento de comparações como apoio para resolver ou representar operações.
Inicialmente o aprendiz, ao utilizar a numeração escrita encontra pro-blemas que podem favorecer a me¬lhor compreensão do sistema, pois através da busca de soluções torna possível estabelecer novas relações; leva à reflexões, argumentações, a validação dos conhecimentos adqui-ridos, e ao inicio da compreensão das regularidades do sistema.
O sistema de numeração na aula.
A seguir serão discutidas algumas ideias sobre os princípios que orien¬tam o trabalho didático através da reflexão da regularidade no uso da numeração escrita.
As regularidades aparecem como justificação das respostas e dos procedimentos utilizados pelas crianças ou como descobertas, necessários para tornar possível a generalização, ou a elaboração de procedimentos mais econômicos. P.117
Assim, a análise das regularidades da numeração escrita é uma fonte de insubstituível no progresso da compreensão das leis do sistema.
uso da numeração escrita como ponto de partida para a reflexão deve, desde o inicio ser trabalhada com os diferentes intervalos da sequência numérica, através de trabalho com problemas, com a numeração escrita desafiadora para a condução de resoluções, de forma que cada escrita se construa em função das relações significativas que mantêm com as outras. Os desafios e argumentações levam as crianças serem capazes de resolver situações-problema que ainda não foram trabalhadas e à sociali-zação do conhecimento do grupo.
As experiências nas aulas são de caráter provisório, às vezes complexas, mas são inevitáveis, porque no trabalho didático é obrigado a considerar a natureza do sistema de numeração como processo de construção do conhecimento.
No trabalho de ensinar e aprender um sistema de representação será necessário criar situações que permitam mostrar a organização do siste-ma, como ele funciona e quais suas propriedades, pois o sistema de nu-meração é carregado de significados numéricos como, os números, a re-lação de ordem e as operações aritméticas. Portanto comparar e operar, ordenar, produzir e interpretar, são os eixos principais para a organização das situações didáticas propostas.
Situações didáticas vinculadas à relação de ordem
O entendimento do sistema decimal posicionai está diretamente ligada a relação de ordem. Por isto as atividades devem estar centradas na comparação, vinculada à ordenação do sistema. Alguns exemplos podem melhorar o entendimento dessas relações, são elas: simulação de uma loja para vender balas, em pacotes de diferentes quantidades. Ao sugerir que as crianças decidam qual o preço de cada tipo de pacote, estarão fazendo comparações em conjunto com os colegas, notações, com¬param as divergências, argumentam e discutem as ideias, orientadas por uma lógica. Assim os critérios de comparação podem não ser colocados imediatamente em ação por todas as crianças, pois algumas irão realizar com maior ou menor esforço o ordenamento, outras ordenam parcialmente alguns números, e os demais se limitam a copiar a que os outros colegas fizeram. Todos nesta atividade se interagem. Os primeiros têm a oportunidade de fundamentar sua produção e conceitualizar os re-cursos que já utilizavam. As crianças que ordenam parcialmente aprendem ao longo da situação, levantam perguntas e confirmam as ideias que não tinham conseguido associar. As crianças que não exteriorizaram nenhuma resposta, também se indagam e podem obter respostas que não tinham encontrado. As crianças que se limitam copiar, é importante que o professor as estimule com intervenções orientadas para desenvolver nelas o trabalho autônomo. Também devem ser estimuladas a perguntarem a si mesmas antes de ir aos outros, recorrer ao que sabem e descobrir seus próprios conhecimentos, e que são capazes de resolver os problemas. Enfim, deve ser incentivada a autonomia.
Uma segunda experiência é aquela que pode usar materiais com nume-ração sequencial com fita métrica, régua, paginação de livros, numeração das casas de uma rua. Todas estas atividades ajudam as crianças buscarem por si mesmas as informações que precisam.
No trabalho conjunto todas as crianças tem oportunidade de aprender, mesmo que em ritmos diferentes, aprendem com o trabalho cooperativo na construção do conhecimento.
Outra proposta de atividade pode ser direcionada a interpretação da escrita numérica no contexto de uso social do cotidiano de cada uma. Pode ser realizado através de: comparação de suas idades, de preços, datas, medidas e outras. Experiências como: formar lista de preços, fazer notas fiscais, inventariar mercadorias, etc. Através de experiências semelhantes, é possível levar as crianças considerar a relevância da relação de ordem numérica. As atividades desenvolvidas produzem efeito no sentido de modificar a escrita, ou da interpretação originalmente realizada. A longe prazo, devem ser capazes de montar e utilizar estratégias de relação de ordem para resolver problemas de produção e interpretação.
Se nas atividades a professora detecta que determinado número tem diferentes notações na turma, deve trabalhar com argumentações até que cheguem a interpretação correta.
Percebe-se através dos argumentos utilizados pelas crianças a busca pela relação de ordem, mesmo naquelas que utilizaram anotações não convencionais, a ponto de transformarem a partir de sucessivas discussões e objeções que elas fazem a si próprias.
A relação numeração falada/numeração escrita é um caminho que as crianças transitam em duas direções: da sequência oral como recurso para compreensão da escrita numérica e como sequência da escrita como recurso para reconstruir o nome do número.
Para isso é importante desenvolver atividades que favoreçam a aplicação de regularidade podendo ser observado nas situações de comparação, de produção ou interpretação.
Mas pergunta-se: quais as regularidades necessárias trabalhar na contagem dos números? Estabelecer as regularidades tem o objetivo de tornar possível a formulação de problemas dirigidos às crianças, mas também para que adquiriram ferramentas para auto-criticar as escritas baseadas na correspondência com a numeração falada e na contagem dos números. Exemplo: as dezenas com dois algarismos, as centenas com três algarismos. Depois do nove vem o zero e passa-se para o número seguinteComo intervir para que as crianças avancem na manipulação da se-quência oral? Pode-se sugerir as crianças que procurem um material que tenha sequência correspondente e descubra-se por si mesma a regula-ridade. Buscar nos números de um a cem quais os que terminam em nove, identificar e nomear os números seguintes do nove. Esta é uma atividade de interpretação e tão importante quanto a produção na contagem dos números. Exemplo: Como descobrir as semelhanças e diferenças entre os números de um a quarenta. Localizar em todos os números de dois dígitos que terminam em nove e anotar qual é o seguinte de cada um deles. Esta atividade pode ser encontrada em materiais como calendário, régua e fita métrica.Um critério importante para trabalhar é estabelecer primeiro as regularidades para um determinado intervalo. A partir daí passar a sua generalização através do uso de materiais que contenham números mai-ores. Só então o indivíduo começa a questionar o seu significado.
As crianças são capazes de inventar algarismos próprios e colocam em jogo as propriedades das opera¬ções como conhecimento implícito sobre o sistema de numeração, importante para descobrir as leis que regem o sistema. Ao estudar o que acontece quando se realizam as somas é possível estabelecer regularidades referentes ao que muda e ao que se conserva.
As atividades como colocar preços em artigos de lojas, contar notas de dez em dez, fazer lista de preço, colocar novos preços aos que já tem, contar livros das prateleiras das estantes de uma biblioteca, e ao comparar a numeração das páginas de um jornal, é possível analisar o que transforma nos números quando lhes soma dez. utilizar dados nos aspectos multiplicativos em que cada ponto do dado vale dez e vão ano-tando a pontuação de cada um dos participantes do grupo. A partir desta atividade são levadas a refletir sobre o que fizeram e sobre a função multiplicativa e relacioná-la com a interpretação aditiva. Desta forma, levá-los a uma maior compreensão do valor posicional. Através de diferentes comparações estabelecem regularidades numéricas para os dezes e os cens e refletir sobre a organização do sistema.
As crianças têm oportunidade de formular regras e leis para as operações com números e concentram nas representações numéricas.
Na segunda série a calculadora pode ser introduzida, desde que de forma adequada, pois leva as crianças aprofundarem suas reflexões, to¬marem consciência das operações numéricas e torna possível que cada um detecte por si mesma quando é que estão corretas e o que não está certo, auto-corrija os erros e formule regras que permitam antecipar a operação que levará ao resultado procurado.
Assim, refletir sobre o sistema de numeração e sobre as operações aritméticas levam as crianças a formularem leis para acharem proce-dimentos mais econômicos. Leva a indagações das razões das regula-ridades de forma significativa. Busca resposta para organizar os siste-mas, para novas descobertas da numeração escrita. veja os vídeos do Programa Zmaro: Humor inteligente de forma descontraída. Acesse www.Zmaro.com.br  
Estilo Jornalismo. Crônicas - piadas do cotidiano - regionalismos Enredo Relatos sobre o cotidiano selecionados de 1994 a 1996, sobre os mais diferentes temas, desde as armações políticas, as gafes de personagens conhecidos do grande público: o leitor, a dona de casa, o ministro, o presidente ou Mike Tyson são ironizados. Trecho Portuguesal = "Presidenciável já não corresponde à modernidade dos tempos. Acho presidenciário muito mais adequado. Já vem com uma vantagem: rima com presidiário. Preste Atenção Na distribuição feita em 6 blocos: Meio sacanas, Amargos, Da Desforra, Inútil, Ainda Cândidos, Nativos (Mané) e D'Além Mar. veja os vídeos do Programa Zmaro: Humor inteligente de forma descontraída. Acesse www.Zmaro.com.br  
Aventuras de Diófanes é o romance mais antigo escrito por um brasileiro - ou melhor, por uma brasileira, o que não deixa de surpreender, se levadas em conta as limitações impostas ao sexo feminino pela sociedade do século XVIII. Teresa Margarida da Silva e Orta nasceu em São Paulo, em 1711 ou início de 1712. Em 1716 viajou com a família para Portugal, onde morreu em 1793. Pelos relatos que nos chegaram foi uma mulher culta, independente e voluntariosa - espécie de precursora das feministas do século XX. Esteve enclausurada no convento de Trinas com a irmã, Catarina Josefa. Casou-se, depois, sem o consentimento dos pais, com Pedro Jansen von Praet, com quem teve 12 filhos. Em 1770 foi presa (cumpriu pena de sete anos) por ordem do Marquês de Pombal. Com a devida chancela do Santo Ofício, Aventuras de Diófanes veio à luz em 1752. O título original era Máximas de virtude e formosura com que Diófanes, Climinéia e Hemirena, príncipes de Tebas,, venceram os mais apertados lances da desgraça. Teresa Margarida usou o pseudônimo Dorotéia Engrássia Tavareda Dalmira. Só mais tarde se conheceria o verdadeiro nome da autora. Não existe unanimidade da crítica a respeito de Aventuras de Diófanes. Afrânio Coutinho e Nelson Werneck Sodré, por exemplo, não o relacionam à produção cultural brasileira. Antônio Cândido sequer o menciona na sua Formação da literatura brasileira. O fato é que o livro desperta cada vez mais interesse. veja os vídeos do Programa Zmaro: Humor inteligente de forma descontraída. Acesse www.Zmaro.com.br  
Fogo Morto (1943) é a obra-prima de José Lins do Rego. Como romance de feição realista, esse livro procura penetrar a superfície das coisas e revelar o processo de mudanças sociais por que passa o Nordeste brasileiro, num largo período que vai desde o Segundo Reinado, incluindo a Revolução Praieira e a Abolição, até as primeiras décadas do século XX. O tema central de Fogo Morto é o desajuste das pessoas com a realidade resultante do declínio do escravismo nos engenhos nordestinos, nas primeiras décadas do século XX. O romance conta a história de um poderoso engenho, o Santa Fé, desde sua fundação até o declínio, quando se transforma em "fogo morto", expressão com que, no Nordeste, designam-se os engenhos inativos. Retomando o espírito de observação realista, o autor produz um minucioso levantamento da vida social e psicológica dos engenhos da Paraíba. Em virtude do apego ao cotidiano da região, Fogo Morto apresenta não apenas valor estético, mas também interesse documental. Fogo Morto não se esgota na classificação de romance regionalista, embora essa seja uma noção correta. Há outros componentes importantes na obra, a partir dos quais se pode enquadrá-la numa tipologia consagrada. Talvez o mais ilustre antecedente de Fogo Morto na literatura brasileira seja O Cortiço (1890), de Aluísio Azevedo.

Em que sentido? No sentido de tomar uma personagem coletiva como objeto de análise. Assim como Aluísio investiga o nascimento, vida e morte de um cortiço do Rio de Janeiro, José Lins penetra no surgimento, plenitude e declínio do Engenho Santa Fé, localizado na zona da mata da Paraíba. Com efeito, o engenho parece possuir vida própria, embora suas células sejam as pessoas que o formam. Como análise quer dizer decomposição, o autor decompõe as pessoas como forma de expor a constituição do todo. Por essa perspectiva, Fogo Morto tanto pode ser entendido como um romance social quanto psicológico. Em rigor, uma categoria não existe sem a outra. O livro é forte em ambas as dimensões. veja os vídeos do Programa Zmaro: Humor inteligente de forma descontraída. Acesse www.Zmaro.com.br  
Conta uma história de amor, magia e vingança: D. Inigo Lopes, após 12 anos longe (onde dizem aprendeu magia), volta para vingar-se de uma briga entre famílias que está acabando com um casamento. Ele enfeitiça a jovem Ausenda e quando seu noivo D. Moço o mata e quebra o feitiço, ela morre também. D. Moço passa a vida triste e se une com ela depois de morto, onde o espírito do vingativo D. Inigo ainda tenta separá-los, sem sucesso. A história é toda contada como que por um frade. veja os vídeos do Programa Zmaro: Humor inteligente de forma descontraída. Acesse www.Zmaro.com.br  
Agora estou sozinha... (1988) - Editora Moderna

Todo jovem ator (e eu fui um deles) sonha em, um dia, fazer o papel de Cyrano de Bergerac e o de Hamlet. Assim, eu não poderia deixar de fazer uma recriação juvenil de Hamlet como eu fiz a de Cyrano. Hamlet, lido ao contrário, dá Telmah. Foi assim que nasceu mais esta minha heroína. O título do livro, inclusive, é o começo do segundo mais famoso monólogo de Hamlet: "now I'm alone".

Ao contrário de A marca..., onde eu praticamente só usei a idéia central de Cyrano, em Agora... eu usei o máximo do texto de Shakespeare que pude. As falas de Hamlet são belíssimas, suas idéias realmente resistiram ao tempo e a peça é, até hoje, considerada como o mais perfeito texto de teatro já produzido (com perdão dos gregos...). Assim, é possível encontrar em Agora..., o ser ou não ser, o há algo de podre no Reino da Dinamarca e tudo o mais que até já entrou para nossa linguagem cotidiana.

Ao inverter o sexo da personagem, deparei-me com algumas dificuldades, e a principal delas foi a personagem Ofélia. A namorada de Hamlet é uma personagem frágil, ingênua, que se deixa morrer no rio enlouquecida pelos acontecimentos. Na transposição, ficaria difícil criar um namorado para Telmah que fosse frágil, ingênuo e suicida. O remédio foi criar Tiago, um namorado com algumas das características de Horácio, amigo de Hamlet, e criar Filhinha, a velha cadelinha de Telmah, que morre de fome quando é afastada de sua dona. Quase tudo de Ofélia está em Filhinha.

Shakespeare aproveita, na cena em que o personagem fala com os atores, para registrar seu modo particular de ver a arte de representar. Na transposição, fiz com que Telmah dissesse o meu modo de ver a arte de ler. veja os vídeos do Programa Zmaro: Humor inteligente de forma descontraída. Acesse www.Zmaro.com.br  
Pestalozzi
Johann Heinrich Pestalozzi, 1746-1827, tentou colocar em prática e desenvolver as idéias de Rousseu sobre a educação, com seu próprio filho, depois dirigindo a que foi a primeira escola profissional para pobres de 1775 a 1780, em seguida os escritos literários defendendo a educação como fator de reforma social de 1780 a 1798 , e , finalmente, tornando-se mestre-escola aos cinqüenta anos, função que exerceu durante vinte anos.
Na obra LEONARDO E GERTRUDES , 1781, descreve a vida simples do povo rural e as grandes mudanças ali verificadas pela inteligência de Gertrudes, uma mulher simples que conquista todos os vizinhos e reforma toda a aldeia través da educação.
Na obra COMO GERTRUDES ENSINA SEUS FILHOS, procura determinas que conhecimentos e que habilidades práticas eram necessários para a criança e como deveriam ser ensinados.
Pestalozzi encara a educação naturalmente segundo o desenvolvimento das crianças, como o principal meio de reforma social. A educação consistia no desenvolvimento moral, mental e físico da natureza da criança, permitindo ao povo a superação de sua ignorância, imundície e miséria.
Os métodos propostos por Pestalozzi foram:
1. a observação ou percepção sensorial, intuição, é a base da instrução;
2. a linguagem deve estar ligada a observação ao objeto ou conteúdo;
3. a época de aprender não é a época de julgamento e critica
4. o ensino deve começar pelos elementos mais simples e proceder gradualmente de acordo com o desenvolvimento da criança, em ordem psicológica;
5. tempo suficiente para assegurar o domínio completo dele pelo aluno;
6. o ensino deve ter por alvo o desenvolvimento;
7. o mestre deve respeitar a individualidade do aluno;
8. o fim principal do ensino é desenvolver e aumentar os poderes da sua inteligência;
9. o saber deve corresponder ao poder e a aprendizagem a conquista de técnicas;
10.
11. as relações entre professor e o aluno devem,m ser baseado no amor;
12. a instrução deve ser subordinada ao fim mais elevado da Educação.
PILETTI, Claudino e Nelson, Filosofia e Historia da Educação, 7.ª edição, 1988, editora Ática, São Paulo, veja os vídeos do Programa Zmaro: Humor inteligente de forma descontraída. Acesse www.Zmaro.com.br  
Poder-se-ia afirmar que esta obra é a continuação de seu primeiro livro, Um Quarto de Légua em Quadro. Com efeito, as personagens são descendentes dos primeiros portugueses que por aqui aportaram a partir da primeira metade do século XVIII. Os fatos ocorrem nas proximidades de Viamão. A narrativa inicia com o casamento do sargento Miguel de Azevedo Beirão, fazendeiro da Lagoa dos Patos, com Dona Camila. Na noite de núpcias, Miguel descobre que Camila não era virgem. Pede às autoridades eclesiásticas a anulação do casamento. Quando o sacristão Bernardo leva uma intimação a Camila, para que fique enclausurada na própria casa enquanto correr o processo de anulação das bodas, esta pratica uma aventura sexual com o sacristão, a fim de se vingar do marido. Bernardo apaixona-se pela senhora que, ao se aproximar do padre Ramiro, é tocada pelo amor deste. O padre, por sua vez, entra num dilema: corresponde ao amor de Camila ou se mantém fiel ao celibato? Enquanto isso, o sacristão fica possesso por um ódio surdo ao padre Ramiro. Configuram-se, ao mesmo tempo, o triângulo amoroso do romance romântico e a angústia barroca que se apodera do pároco. O final trágico, pois, numa manhã, na véspera da celebração religiosa, Bernardo passa a perseguir o sacerdote Ramiro campanário acima. No alto da torre Bernardo acerta um golpe com o turíbulo na cabeça do padre, que morre imediatamente. A seguir, desequilibra-se da torre, vindo a morrer sobre as pedras. A obra relata as dificuldades, os preconceitos e o abandono a que foram submetidos os imigrante portugueses que vieram desbravar as paragens da Província de São Pedro do Rio Grande. Em Manhã Transfigurada:

· A narrativa é ambientada em Viamão, no século passado, o que nos remete a uma característica da obra de Assis Brasil: a pesquisa histórica.

· A novela é centrada na personagem Camila, e através de sua trajetória podemos perceber a condição de submissão a que a mulher estava exposta na época.

· No início do relato, Laurinda apronta o vestido que Camila usará para ir à igreja, logo, o caso Camila com Bernardo já ocorreu, assim como o clima de sedução que se estabelece entre Camila e o padre Ramiro. Isto caracteriza a quebra da linearidade. Somente após este início, um flash back nos esclarece o adultério que ocorre envolvendo Camila e Bernardo e a atmosfera que se cria entre o padre e a mulher.

· Quando Camila seduz Bernardo, está tentando afirmar-se como mulher, desejada, capaz de atrair um homem, uma vez que a rejeição do esposo a deprimira muito. Já o Padre Ramiro desperta na moça o que ela acredita ser o verdadeiro amor. veja os vídeos do Programa Zmaro: Humor inteligente de forma descontraída. Acesse www.Zmaro.com.br  


Ajude o Zmaro!

Se for comprar algo no banggood, conferta o link e ajude o Zmaro

Dependendo do que você esta comprando, fazendo isto, ainda posso conseguir um cupom de desconto pra você

Acesse www.Zmaro.tv/bg para saber mais

Clique abaixo para ver um pouco do Programa Zmaro
Humor inteligente de forma descontraída...

 

De grão em grão a galinha enche o bico!!!
Contribua com o PobreVirtual e Programa Zmaro. Curta, comente e compartilhe o Programa Zmaro nas suas redes sociais.
Envie seus resumos, receitas, dicas, provérbios e o que mais tiver para comaprtilhar no PobreVirtual e no Programa Zmaro. Basta acessar
www.pobrevirtual.com.br/fale
Ou se preferir você pode contribuir financeiramente depositanto qualquer valor em qualquer lotérica (Caixa Econômica Federal): agência 1998, operação 013, Poupança número 8155-0, ou veja outros meios em www.Zmaro.tv/doe 
Livros e cursos são caros, me ajude a aprender novas linguagens para lhe ensinar melhor e incrementar este site com várias novidades. Quando você passar em frente a uma lotérica, lembre-se que existe alguém que precisa muito desta(s) moedinha(s), ponha a mão no bolso e perca alguns segundos do seu tempo e faça um depósito. Pegue aquela moedinha que vai acabar caindo do seu bolso e dê um bom destino a ela.